Skip to main content

Comprehensive Quick Reference Table for DSA in C, C++, Java, and Python

 

Comprehensive Quick Reference Table for DSA in C, C++, Java, and Python

This table provides a comprehensive overview of various Data Structures and Algorithms (DSA) implemented in C, C++, Java, and Python. It includes example code snippets, typical use cases, and categorizes each topic by difficulty level (Beginner, Intermediate, Expert).


Data Structure / Algorithm

Language

Example Code

Use Case

Level

Arrays

C

c

int arr[5] = {1, 2, 3, 4, 5};

Storing fixed-size data

Beginner


C++

cpp

int arr[5] = {1, 2, 3, 4, 5};

std::vector<int> vec = {1,2,3,4,5};

Fixed and dynamic arrays

Beginner


Java

java

int[] arr = {1,2,3,4,5};

Storing fixed-size data

Beginner


Python

python

arr = [1, 2, 3, 4, 5]

Dynamic array-like storage

Beginner

Linked List

C

c

struct Node {

 int data;

 struct Node* next;

};

Dynamic data storage

Intermediate


C++

cpp

struct Node {

 int data;

 Node* next;

};

std::list<int> myList;

STL linked list

Intermediate


Java

java

class Node {

 int data;

 Node next;

}

LinkedList<Integer> list = new LinkedList<>();

Java Collections linked list

Intermediate


Python

python

from collections import deque

q = deque()

Using deque for linked list

Intermediate

Stack

C

c

#define MAX 100

int stack[MAX];

int top = -1;

LIFO operations

Beginner


C++

cpp

std::stack<int> s;

STL stack

Beginner


Java

java

Stack<Integer> stack = new Stack<>();

Java Collections stack

Beginner


Python

python

stack = []

stack.append(1)

stack.pop()

Using list as stack

Beginner

Queue

C

c

#define SIZE 100

int queue[SIZE];

int front = -1, rear = -1;

FIFO operations

Beginner


C++

cpp

std::queue<int> q;

STL queue

Beginner


Java

java

Queue<Integer> queue = new LinkedList<>();

Java Collections queue

Beginner


Python

python

from collections import deque

q = deque()

q.append(1)

q.popleft()

Using deque as queue

Beginner

Binary Tree

C

c

struct Node {

 int data;

 struct Node* left;

 struct Node* right;

};

Hierarchical data storage

Intermediate


C++

cpp

struct Node {

 int data;

 Node* left;

 Node* right;

};

Custom binary tree

Intermediate


Java

java

class Node {

 int data;

 Node left, right;

}

Custom binary tree

Intermediate


Python

python

class Node:

 def __init__(self, data):

 self.data = data

 self.left = None

 self.right = None

Custom binary tree

Intermediate

Sorting Algorithms

C

c

// Quick Sort implementation

void quickSort(int arr[], int low, int high) {

 // Implementation

}

Data organization

Beginner to Intermediate


C++

cpp

std::sort(vec.begin(), vec.end());

STL sort and custom sort

Beginner to Intermediate


Java

java

Arrays.sort(arr);

Java built-in sort and custom sort

Beginner to Intermediate


Python

python

sorted_arr = sorted(arr)

arr.sort()

Python's built-in sort

Beginner to Intermediate

Graphs

C

c

// Adjacency list implementation

struct Graph {

 int V;

 int** adj;

};

Network data

Expert


C++

cpp

std::vector<std::vector<int>> adj;

STL containers for graphs

Expert


Java

java

Map<Integer, List<Integer>> adj = new HashMap<>();

Java Collections for graphs

Expert


Python

python

import networkx as nx

G = nx.Graph()

NetworkX library

Expert

Hash Tables

C

c

// Implement using arrays and linked lists

struct HashTable {

 // Implementation

};

Fast data retrieval

Intermediate


C++

cpp

std::unordered_map<int, std::string> hashMap;

STL unordered_map

Intermediate


Java

java

HashMap<Integer, String> map = new HashMap<>();

Java Collections HashMap

Intermediate


Python

python

hash_map = {}

hash_map[1] = "one"

Using dictionaries

Intermediate

Heaps

C

c

// Implement binary heap using arrays

Priority queues

Intermediate


C++

cpp

std::priority_queue<int> pq;

STL priority_queue

Intermediate


Java

java

PriorityQueue<Integer> pq = new PriorityQueue<>();

Java Collections PriorityQueue

Intermediate


Python

python

import heapq

heap = []

heapq.heappush(heap, 1)

heapq.heappop(heap)

heapq module

Intermediate

Dynamic Programming

C

c

// Fibonacci using memoization

int fib(int n, int memo[]) {

 if (n <= 1)

 return n;

 if (memo[n] != -1)

 return memo[n];

 memo[n] = fib(n-1, memo) + fib(n-2, memo);

 return memo[n];

}

Optimization problems

Intermediate to Expert


C++

cpp

int fib(int n, std::vector<int>& memo) {

 if (n <= 1)

 return n;

 if (memo[n] != -1)

 return memo[n];

 memo[n] = fib(n-1, memo) + fib(n-2, memo);

 return memo[n];

}

STL vectors for memoization

Intermediate to Expert


Java

java

int fib(int n, int[] memo) {

 if (n <= 1)

 return n;

 if (memo[n] != -1)

 return memo[n];

 memo[n] = fib(n-1, memo) + fib(n-2, memo);

 return memo[n];

}

Java arrays for memoization

Intermediate to Expert


Python

python

def fib(n, memo={}):

 if n in memo:

 return memo[n]

 if n <= 1:

 return n

 memo[n] = fib(n-1, memo) + fib(n-2, memo)

 return memo[n]

Using dictionaries for memoization

Intermediate to Expert

Searching Algorithms

C

c

int binarySearch(int arr[], int l, int r, int x) {

 while (l <= r) {

 int m = l + (r - l) / 2;

 if (arr[m] == x)

 return m;

 if (arr[m] < x)

 l = m + 1;

 else

 r = m - 1;

 }

 return -1;

}

Efficient searching

Beginner to Intermediate


C++

cpp

int index = std::binary_search(vec.begin(), vec.end(), x) ? /* index */ : -1;

STL binary search

Beginner to Intermediate


Java

java

int index = Arrays.binarySearch(arr, x);

Java built-in binary search

Beginner to Intermediate


Python

python

import bisect

index = bisect.bisect_left(arr, x)

if index != len(arr) and arr[index] == x:

 print("Found at", index)

Using bisect module

Beginner to Intermediate

Recursion

C

c

int factorial(int n) {

 if (n == 0)

 return 1;

 return n * factorial(n-1);

}

Solving problems with recursive solutions

Beginner to Expert


C++

cpp

int factorial(int n) {

 if (n == 0)

 return 1;

 return n * factorial(n-1);

}

Same as C

Beginner to Expert


Java

java

int factorial(int n) {

 if (n == 0)

 return 1;

 return n * factorial(n-1);

}

Same as C

Beginner to Expert


Python

python

def factorial(n):

 return 1 if n == 0 else n * factorial(n-1)

Same as C

Beginner to Expert

Greedy Algorithms

C

c

// Example: Activity Selection Problem

Optimization problems

Intermediate to Expert


C++

cpp

// Implement greedy algorithms using STL

Same as C

Intermediate to Expert


Java

java

// Implement greedy algorithms using Collections

Same as C

Intermediate to Expert


Python

python

# Implement greedy algorithms using lists and sort

Same as C

Intermediate to Expert

Backtracking

C

c

// Example: N-Queens Problem

void solveNQueens(int board[], int row) { /*...*/ }

Solving constraint satisfaction problems

Expert


C++

cpp

// Implement backtracking algorithms using recursion

void solveNQueens(int board[], int row) { /*...*/ }

Same as C

Expert


Java

java

void solveNQueens(int board[], int row) { /*...*/ }

Same as C

Expert


Python

python

def solve_n_queens(board, row):

 # Backtracking logic

Same as C

Expert


Additional Notes:

  • Consistency Across Languages: While the core logic of DSA remains consistent, syntax and specific library functions vary across languages. Familiarity with language-specific features can optimize implementations.
  • Libraries and Built-in Functions:
    • C++ and Java offer extensive Standard Template Libraries (STL) and Collections Frameworks respectively, which provide ready-to-use implementations for many data structures.
    • Python includes built-in data structures like lists and dictionaries, along with modules like collections and heapq for specialized structures.
  • Performance Considerations:
    • C and C++ generally offer better performance due to lower-level memory management.
    • Java provides a balance between performance and ease of use with automatic garbage collection.
    • Python offers simplicity and rapid development but may lag in performance for compute-intensive tasks.
  • Recursion Depth:
    • C and C++ have limited recursion depths due to stack size constraints.
    • Java manages recursion depth with JVM settings.
    • Python has a default recursion limit (which can be increased with sys.setrecursionlimit()).
  • Memory Management:
    • C requires manual memory management using malloc and free.
    • C++ offers both manual and automatic memory management with smart pointers.
    • Java and Python handle memory management automatically through garbage collection.

Tips for Mastering DSA Across Languages:

  1. Understand the Fundamentals:
    • Grasp the core concepts of each data structure and algorithm without focusing on language-specific implementations initially.
  2. Practice Implementation:
    • Implement each data structure and algorithm in all four languages to understand syntax differences and leverage language-specific features.
  3. Utilize Language Libraries:
    • Learn and use built-in libraries and functions to optimize your code and reduce implementation time.
  4. Analyze Time and Space Complexity:
    • Evaluate the efficiency of your implementations to make informed decisions about which data structure or algorithm to use in different scenarios.
  5. Solve Diverse Problems:
  6. Collaborate and Seek Feedback:
    • Engage with programming communities, participate in code reviews, and collaborate on projects to gain different perspectives and improve your skills.
  7. Stay Updated:
    • Keep abreast of new language features and libraries that can enhance your DSA implementations.

 

Comments

Popular posts from this blog

Gujarati Keyboard layout (terafont-varun), Computer Short cut key, Tally short cut key

Word , Excel , Power Point Shortcut Key in Gujarati

Terafont-Varun (Gujarati Typing) Keyboard Layout by "Sama Soyab"

  For Gujarati Typing : Required : Terafont-Varun Font  After Successfully Installed Terafont Varun Open Any Text Editor or any program. Select Font Terafont-Varun -> Ok For more detail please watch below video. Search Topics : Learn terafont varun, Learn terafont chandan, Learn terafont gujarati to english translation, Learn terafont varun keyboard, Learn terafont converter, Learn terafont varun zip, Learn terafont keyboard, Learn terafont kinnari, Learn terafont akash, Learn terafont aakash, Learn terafont akash ttf, Learn terafont aakash gujarati download, Learn terafont akash keyboard, Learn terafont akash download for windows 10, Learn terafont akash font download, Learn terafont arun, Learn terafont border, Learn terafont chandan keyboard, Learn terafont-chandan font, Learn tera font chandana, Learn convert terafont to shruti, Learn convert terafont varun to shruti, Learn terafont varun chart, Learn terafont download, Learn terafont download for windows 10, Learn tera...